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In a recent paper, Singh and Tankesh&if) [Phys. Rev. E67, 012201(2003] proposed a new interpre-
tation of the collective dynamics in liquid metals and, in particular, of the relaxation mechanisms ruling density
fluctuations propagation. At variance with both the predictions of the current literature and the results of recent
inelastic x-ray scattering experiments, ST associate the quasielastic componenS@ the¢ to the thermal
relaxation, as it holds in ordinary adiabatic hydrodynamics valid for nonconductive liquids and @+t
limit. We show here that this interpretation leads to a nonphysical behavior of different thermodynamic and
transport parameters.
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Recently, Singh and Tankeshw@T) reported a new ver- Q| 4
sion of the finite wave-vecto, extension of the general- r,= 2, 5775+ 7B |
ized hydrodynamicsthe so-called “molecular hydrodynam- P
ics”) applied to the dynamics of simple liquid metdl§. The
goal of the ST paper is twofold. On the one hand, the authors Q?
propose an analytic expression for the density-density corre- Iy= 2—p[(y— DN/Cp], (1)

lation function,F(Q,t), which is based on the existence of
two relaxation channels, and they test it through its Fourier
transform against the dynamic structure factor recently meawhere, y, andC, are the thermal conductivity, specific-heat
sured by inelastic x-ray scatteringXS) on several liquid ratio, and constant pressure heat capacity, whil@nd 7y
metals. On the other hand, the authors assign a specifare the shear and bulk viscosity, respectively. The width of
meaning to these two relaxation processes: the slower prdhe quasielastic mode, instead, isid#DQ?, i.e., it is ruled
cess is traced back to the thermal relaxation, while the fastdsy the thermal diffusion only.
one is ascribed to viscous effects. More specifically, at vari- In Ref. [1], ST extend this approach to the finite wave-
ance with the results of previous studies performed on th&ector domain probed by IXS, and they apply it to a specific
same IXS data used by §2Z-4], they assign the quasielastic subclass of simple liquids, namely liquid metals. To this pur-
component of the IXS spectra to the thermal relaxation.  pose, ST replace the Lorentzian shape stemming from simple

The aim of this Comment is to point out how, although hydrodynamics with a hyperbolic secant shape, leaving un-
the analytical spectral shape proposed by the authors turrchanged the origin of the individual contributions.
out to reproduce the experimental spectra at a reasonable The extension to finite wave vectors, however, in the spe-
level of accuracy, the interpretation behind it is inadequate t@ial case of highly conductive systems, requires careful
describe the microdynamics of simple metals. In particulargvaluation of the physics behind the model for two main
assigning the whole quasielastic IXS spectrum to the thermakasons. First, as pointed out in the celebrated textbook by
relaxation, the value and th® dependence of the derived Faber[6], in a liquid metal, owing to the high thermal con-
fitting parameters are not consistent with independent deteructivity, on pushing the wave vector to values comparable
mination of the transportviscosity, thermal conductivily to the inverse mean interparticle distanes in the present
and thermodynamigspecific-heat properties and disagree casg the quantityD-Q? soon becomes larger than the Bril-
with what is expected in general. louin frequencywg. Consequently, as predictgef. [6]),

The dynamic structure factor of simple liquids, in te  the thermal peak broadens, ultimately overlapping with the
— 0 limit, is constituted by three lines: a quasielastic, Lorent-Brillouin lines, the sound propagation turns from adiabatic to
zian component centered at zero frequency, and a doublé&othermal, and independent thermal fluctuations become im-
(Brillouin peakg symmetrically shifted at finite enerdgy]. possible. A second reason is that, on the snapshot time scale
In this limit, the energy position of the side lines, their broad-probed by IXS(THz), the diffusive atomic motion character-
ening, and the broadening of the central line are successfulligtic of the liquid state looks frozen, and therefore part of the
described within the well-known simple hydrodynamic ap-viscous contribution ruling the Brillouin width at lowW is
proach. In particular, the frequency of the Brillouin mode istransferred to the elastic line. Both of these reasons have
wg=CyQ, Wherec;, is the adiabatic sound velocity, while its been disregarded by ST.
linewidth (half width at half maximumis ruled by thermal A formal way to quantify the scenario qualitatively de-
(I'yy) and viscougI',) damping as picted above is to introduce the memory-function formalism.

Within this framework, the normalized density autocorrela-
tion function ¢(Q,t)=F(Q,t)/S(Q) obeys the Langevin
r=r,+I'y, equation
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. t . cous origin of the central peak is, inde€d,a substantia)
HQ.H) + wi(Q Q1) +f M(Q,t-t")¢(Q,t")dt’ =0, independencér,, is almostQ-independentand ii) a strong
0 temperature dependence of its widtie structural relax-

(2)  ation follows the Arrhenius or an even faster behayid).

. On the contrary, a central peak of thermal origin must show
where 05(Q)=-¢(Q,0=KgTQ?/mSQ) is related to the (i) a strongQ dependencewidth «Q? until the structure
generalized isothermal sound velocityQ)=wy(Q)/Q and  factor is flay and (ii) a very weak temperature dependence
M(Q,t) is the second-order memory function which, in the (traced back to the mild temperature dependence of the ther-
hydrodynamic limit, reads mal conductivity. While the temperature dependence of the

central peak is difficult to determine experimentally, because
M(Q,t) = 2D,Q?8(t) + (y— 1)co(2)(Q)e"DTQZI (3) of the difficulty of supercooling liquid metalgsome hints
_ 4 o ) ) could come from the molecular-dynami@dD) simulation,
with Dy=(5 75+ 7g)/p the longitudinal viscosity andy the  see beloy}, the Q dependence of the central peak is rather
specific-heat ratio. It is easy to show from E¢®) and(3),  clear: its experimental widttas determined by IXS specjra
indeed, thaif the conditionwg>DQ? holds, the dynamic s a quantity that can be roughly determined by a ruler, or
structure faCtO(i.e., the Fourier trasform Cﬁ) reduces to the better by a f|tt|ng procedure' and turns out to be almost con-
sum of a(therma) central Lorentzian contribution and a stant in the examine® range. If one interpretetfollowing
damped harmonic-oscillator spectrum of characteristic fresT) this width as due to the thermal relaxation process, it
quencywg=\ywo (Which is the sum of two symmetrically \would be equal td;Q? and, as a consequence, the general-
shifted Lorentzians in the limif' < o). As y=(co/c)?, one  jzed thermal diffusivity would obviously become strongly
ultimately gets the hydrodynamic result, i.e., an adiabatiQQ-dependenfD+(Q) = Q?], ultimately dropping by a factor
regime. ~400 from the hydrodynamic limit to the examin€drange.

The finiteQ wave-vector generalization stems from drop- This behavior is difficult to understand on a physical basis,
ping the hypothesis of the instantanegMgarkovian nature  and is very different from that observed in other liquids.
of the viscous term. In particular, one can introduce a finitendeed, although we are not aware of any explRit(Q)
time scale(7) for the decay of the first term in E@3) and,  estimates for liquid metals, detailed calculations for other
according to thev, value, the viscous relaxation can affect |iquids (water[11]) show a decrease of only a factor 10 on
both the quasielastic and the inelastic peaks. Actually, thgoing fromQ=0 and theQ value of the the maximum of the
situation is even more involved. In earlier MD studies of static structure factor. The too strofgdependence dd+(Q)
liquid metals, it was soon realized that the viscous dynamicgjerived by ST speaks against the assignment of the central
in the microscopic regimé.e., at a wavelength comparable peak to the thermal process. Turning our attention now to the
with the inverse mean interparticle separafigroceeds temperature dependence of the central peak width, a recent
through two distinct processes, characterized by two wellmp work on undercooled liquid lithium showed that this
separated time scalds,, and 7,) [7]. This idea has been dth is actually strongly temperature-dependent. More im-
substantiated recently by a number of IXS investigationsportantly, the derived relaxation time, closely follows the
where the presence and the role of the two relaxation mechgwehavior of the mass diffusion coefficiefds expected, for
nisms have been identified and widely discusg2eé4,8,9.  example, from the predictions of the mode-coupling theory
In particular, it has been pointed out that the slowel  for the structural relaxation timgL2]), increasing by more
relaxation time satisfies the conditians(Q)7,(Q)>1, i.e.,  than a factor 10 in the spanned temperature rdhge Such
some part of the viscous flow is frozen. As a consequence, & strong temperature dependence is not expected for the ther-
the wave vectors typical of the IXS experimentQ  mal diffusivity, indicating once more the nonthermal origin
=1-20 nm?), the quasielastic spectrum acquires a compoof the central peak.
nent arising from this frozen structural relaxation. Moreover, A further consequence of the assignment of the central
owing to the high thermal conductivity, in liquid metals the peak to the thermal relaxation process is the anoma@us
conditionwg 7= (co/ D1 Q) <1 holds above wave vectors of dependence, obtained by ST, of the parameter describing the
the order of 0.1 nm [15]. In this limit, the sound propaga- ratio of the elastic to inelastic scattering intensity. In the
tion is isothermal and not adiabatic, which means that theuthors’ notation, this is the quantigfQ) entering in their
thermal relaxation is too broad to give a noticeable quasielas=q. (4), which is related to the generalized specific-heat ratio
tic component, while it renormalizes the sound velocity fromy(Q) via the expressiony=1/(1-a). In Fig. 1, we report
the hydrodynamic value, to the isothermal value, as  4(Q) as obtained by ST compared to previous numerical
clearly discussed in Ref8] and pointed out in previous calculation for the case of liquid lithiunil4]. The values
literature[16]. from the ST analysis clearly overestimate the calculated

Summing up, the quasielastic peak in 8, ) is ex-  ones, although these latter have been obtained through simu-
pected to arise from the frozen structural relaxation and nofations which well reproduce the experimental spectra.
from the thermal process. Its linewidth is therefore associ- Finally, the hydrodynamic expressi¢Eq. (1)] which ST
ated tOT;l and not toD{Q?. utilize to estimate the sound attenuatitand to judge the

A decisive support to the origin that we propose for thereliability of their mode) is valid only for ordinary(noncon-
quasielastic peak can be gained by the wave vector and terducting liquids in theQ— 0 limit. It accounts, indeed, for
perature dependence of the spectrum. The signature of a vithe first-order nonvanishing attenuation contribution from
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22 7 T T T Ty T ] structural relaxation contribution is frozen on the probed
L 1 time scale(in liquid lithium this latter contribution from the
20+ . microscopic part is one-half of the whole viscous tg8.
L (C)DO o] 1 In conclusion, in our opinion the model proposed by
1.8 | o % o . Sing_h _and Tankeswar has the merit to indicate a possible
S - & heuristic analytical timgand frequencydependence of the
= 16 o % o . intermediate scattering functiofdynamic structure factor
- ) % 00 O 1 appropriate to catch some features of the dynamics in the
14| 8 %05 o © ® THz frequency region. Indeed, for instance, the functional
- 1 form proposed by ST has all the spectral moments finite,
1.2; . while the memory function approach, leading to spectral
? ® o9 ° 'Y 1 shapes that are described by fractions of polynoms, has only
1.0 e . @ ., . . a finite number of converging spectral moments. The ST

0 3 10 15 20 2 analysis, however, seems to be rather weak in the physical
Q (nm™) interpretation of the relaxation processes that drive the col-
lective dynamics. Neither of the two parametetsand 7,

FIG. 1. Comparison between the generalized_ specific-he_at ratifas a clear meaning and can be directly associated to any
¥=Cp/c, as obtained by the ST mode) and by direct numerical  rg|axation mechanism, as it happens, for example, within a
calculation(s). memory-function framework. As a consequence of the incor-

rect identification of the role of the thermal process, the pa-
the thermal diffusive mode, and it relates the attenuation teameterr; has no connection with any thermal propefe-
the whole longitudinal viscosity. As pointed out in RE8],  ing in fact mainly related to the structural relaxation timg,
the small attenuation contribution from the thermal processhe generalized specific-heat ratio obtained from the fitting
in the IXS wave-vector range has, in liquid metals, the dif-shows marked discrepancies with the expected behavior, and
ferent expression the viscosity cannot be estimated through Edl) in

Ref. [1].

Lip=(y- 1)Ct2/DTv (4) ] )
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