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In a recent paper, Singh and Tankeshwar(ST) [Phys. Rev. E67, 012201(2003)] proposed a new interpre-
tation of the collective dynamics in liquid metals and, in particular, of the relaxation mechanisms ruling density
fluctuations propagation. At variance with both the predictions of the current literature and the results of recent
inelastic x-ray scattering experiments, ST associate the quasielastic component of theSsQ,vd to the thermal
relaxation, as it holds in ordinary adiabatic hydrodynamics valid for nonconductive liquids and in theQ→0
limit. We show here that this interpretation leads to a nonphysical behavior of different thermodynamic and
transport parameters.
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Recently, Singh and Tankeshwar(ST) reported a new ver-
sion of the finite wave-vector,Q, extension of the general-
ized hydrodynamics(the so-called “molecular hydrodynam-
ics”) applied to the dynamics of simple liquid metals[1]. The
goal of the ST paper is twofold. On the one hand, the authors
propose an analytic expression for the density-density corre-
lation function,FsQ,td, which is based on the existence of
two relaxation channels, and they test it through its Fourier
transform against the dynamic structure factor recently mea-
sured by inelastic x-ray scattering(IXS) on several liquid
metals. On the other hand, the authors assign a specific
meaning to these two relaxation processes: the slower pro-
cess is traced back to the thermal relaxation, while the faster
one is ascribed to viscous effects. More specifically, at vari-
ance with the results of previous studies performed on the
same IXS data used by ST[2–4], they assign the quasielastic
component of the IXS spectra to the thermal relaxation.

The aim of this Comment is to point out how, although
the analytical spectral shape proposed by the authors turns
out to reproduce the experimental spectra at a reasonable
level of accuracy, the interpretation behind it is inadequate to
describe the microdynamics of simple metals. In particular,
assigning the whole quasielastic IXS spectrum to the thermal
relaxation, the value and theQ dependence of the derived
fitting parameters are not consistent with independent deter-
mination of the transport(viscosity, thermal conductivity)
and thermodynamic(specific-heat) properties and disagree
with what is expected in general.

The dynamic structure factor of simple liquids, in theQ
→0 limit, is constituted by three lines: a quasielastic, Lorent-
zian component centered at zero frequency, and a doublet
(Brillouin peaks) symmetrically shifted at finite energy[5].
In this limit, the energy position of the side lines, their broad-
ening, and the broadening of the central line are successfully
described within the well-known simple hydrodynamic ap-
proach. In particular, the frequency of the Brillouin mode is
vB=c0Q, wherec0 is the adiabatic sound velocity, while its
linewidth (half width at half maximum) is ruled by thermal
sGthd and viscoussGhd damping as

G = Gh + Gth,

Gh =
Q2

2r
F4

3
hs + hBG ,

Gth =
Q2

2r
fsg − 1dl/Cpg, s1d

wherel, g, andCp are the thermal conductivity, specific-heat
ratio, and constant pressure heat capacity, whilehs and hB
are the shear and bulk viscosity, respectively. The width of
the quasielastic mode, instead, is 1/tth=DTQ2, i.e., it is ruled
by the thermal diffusion only.

In Ref. [1], ST extend this approach to the finite wave-
vector domain probed by IXS, and they apply it to a specific
subclass of simple liquids, namely liquid metals. To this pur-
pose, ST replace the Lorentzian shape stemming from simple
hydrodynamics with a hyperbolic secant shape, leaving un-
changed the origin of the individual contributions.

The extension to finite wave vectors, however, in the spe-
cial case of highly conductive systems, requires careful
evaluation of the physics behind the model for two main
reasons. First, as pointed out in the celebrated textbook by
Faber[6], in a liquid metal, owing to the high thermal con-
ductivity, on pushing the wave vector to values comparable
to the inverse mean interparticle distance(as in the present
case) the quantityDTQ2 soon becomes larger than the Bril-
louin frequencyvB. Consequently, as predicted(Ref. [6]),
the thermal peak broadens, ultimately overlapping with the
Brillouin lines, the sound propagation turns from adiabatic to
isothermal, and independent thermal fluctuations become im-
possible. A second reason is that, on the snapshot time scale
probed by IXS(THz), the diffusive atomic motion character-
istic of the liquid state looks frozen, and therefore part of the
viscous contribution ruling the Brillouin width at lowQ is
transferred to the elastic line. Both of these reasons have
been disregarded by ST.

A formal way to quantify the scenario qualitatively de-
picted above is to introduce the memory-function formalism.
Within this framework, the normalized density autocorrela-
tion function fsQ,td=FsQ,td /SsQd obeys the Langevin
equation
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f̈sQ,td + v0
2sQdfsQ,td +E

0

t

MsQ,t − t8dḟsQ,t8ddt8 = 0,

s2d

where v0
2sQd=−f̈sQ,0d=KBTQ2/mSsQd is related to the

generalized isothermal sound velocityctsQd=v0sQd /Q and
MsQ,td is the second-order memory function which, in the
hydrodynamic limit, reads

MsQ,td = 2DVQ2dstd + sg − 1dv0
2sQde−DTQ2t s3d

with DV= s 4
3hs+hBd /r the longitudinal viscosity andg the

specific-heat ratio. It is easy to show from Eqs.(2) and (3),
indeed, thatif the conditionvB@DTQ2 holds, the dynamic
structure factor(i.e., the Fourier trasform ofF) reduces to the
sum of a (thermal) central Lorentzian contribution and a
damped harmonic-oscillator spectrum of characteristic fre-
quencyvB<Îgv0 (which is the sum of two symmetrically
shifted Lorentzians in the limitG!v0). As g=sc0/ctd2, one
ultimately gets the hydrodynamic result, i.e., an adiabatic
regime.

The finiteQ wave-vector generalization stems from drop-
ping the hypothesis of the instantaneous(Markovian) nature
of the viscous term. In particular, one can introduce a finite
time scalestd for the decay of the first term in Eq.(3) and,
according to thev0t value, the viscous relaxation can affect
both the quasielastic and the inelastic peaks. Actually, the
situation is even more involved. In earlier MD studies of
liquid metals, it was soon realized that the viscous dynamics
in the microscopic regime(i.e., at a wavelength comparable
with the inverse mean interparticle separation) proceeds
through two distinct processes, characterized by two well-
separated time scales(ta and tm) [7]. This idea has been
substantiated recently by a number of IXS investigations,
where the presence and the role of the two relaxation mecha-
nisms have been identified and widely discussed[2–4,8,9].
In particular, it has been pointed out that the slowersad
relaxation time satisfies the conditionvBsQdtasQd@1, i.e.,
some part of the viscous flow is frozen. As a consequence, at
the wave vectors typical of the IXS experimentssQ
=1–20 nm−1d, the quasielastic spectrum acquires a compo-
nent arising from this frozen structural relaxation. Moreover,
owing to the high thermal conductivity, in liquid metals the
conditionvBtth<sc0/DT Qd,1 holds above wave vectors of
the order of 0.1 nm−1 [15]. In this limit, the sound propaga-
tion is isothermal and not adiabatic, which means that the
thermal relaxation is too broad to give a noticeable quasielas-
tic component, while it renormalizes the sound velocity from
the hydrodynamic valuec0 to the isothermal valuect, as
clearly discussed in Ref.[8] and pointed out in previous
literature[16].

Summing up, the quasielastic peak in theSsQ,vd is ex-
pected to arise from the frozen structural relaxation and not
from the thermal process. Its linewidth is therefore associ-
ated tota

−1 and not toDTQ2.
A decisive support to the origin that we propose for the

quasielastic peak can be gained by the wave vector and tem-
perature dependence of the spectrum. The signature of a vis-

cous origin of the central peak is, indeed,(i) a substantialQ
independence(ta is almostQ-independent) and (ii ) a strong
temperature dependence of its width(the structural relax-
ation follows the Arrhenius or an even faster behavior[10]).
On the contrary, a central peak of thermal origin must show
(i) a strongQ dependence(width ~Q2 until the structure
factor is flat) and (ii ) a very weak temperature dependence
(traced back to the mild temperature dependence of the ther-
mal conductivity). While the temperature dependence of the
central peak is difficult to determine experimentally, because
of the difficulty of supercooling liquid metals[some hints
could come from the molecular-dynamics(MD) simulation,
see below], the Q dependence of the central peak is rather
clear: its experimental width(as determined by IXS spectra)
is a quantity that can be roughly determined by a ruler, or
better by a fitting procedure, and turns out to be almost con-
stant in the examinedQ range. If one interpreted(following
ST) this width as due to the thermal relaxation process, it
would be equal toDTQ2 and, as a consequence, the general-
ized thermal diffusivity would obviously become strongly
Q-dependentfDTsQd~Q−2g, ultimately dropping by a factor
<400 from the hydrodynamic limit to the examinedQ range.
This behavior is difficult to understand on a physical basis,
and is very different from that observed in other liquids.
Indeed, although we are not aware of any explicitDTsQd
estimates for liquid metals, detailed calculations for other
liquids (water [11]) show a decrease of only a factor 10 on
going fromQ=0 and theQ value of the the maximum of the
static structure factor. The too strongQ dependence ofDTsQd
derived by ST speaks against the assignment of the central
peak to the thermal process. Turning our attention now to the
temperature dependence of the central peak width, a recent
MD work on undercooled liquid lithium showed that this
width is actually strongly temperature-dependent. More im-
portantly, the derived relaxation timeta closely follows the
behavior of the mass diffusion coefficient(as expected, for
example, from the predictions of the mode-coupling theory
for the structural relaxation time[12]), increasing by more
than a factor 10 in the spanned temperature range[13]. Such
a strong temperature dependence is not expected for the ther-
mal diffusivity, indicating once more the nonthermal origin
of the central peak.

A further consequence of the assignment of the central
peak to the thermal relaxation process is the anomalousQ
dependence, obtained by ST, of the parameter describing the
ratio of the elastic to inelastic scattering intensity. In the
authors’ notation, this is the quantityasQd entering in their
Eq. (4), which is related to the generalized specific-heat ratio
gsQd via the expressiong=1/s1−ad. In Fig. 1, we report
gsQd as obtained by ST compared to previous numerical
calculation for the case of liquid lithium[14]. The values
from the ST analysis clearly overestimate the calculated
ones, although these latter have been obtained through simu-
lations which well reproduce the experimental spectra.

Finally, the hydrodynamic expression[Eq. (1)] which ST
utilize to estimate the sound attenuation(and to judge the
reliability of their model) is valid only for ordinary(noncon-
ducting) liquids in theQ→0 limit. It accounts, indeed, for
the first-order nonvanishing attenuation contribution from
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the thermal diffusive mode, and it relates the attenuation to
the whole longitudinal viscosity. As pointed out in Ref.[8],
the small attenuation contribution from the thermal process
in the IXS wave-vector range has, in liquid metals, the dif-
ferent expression

Gth = sg − 1dct
2/DT, s4d

wherect is the isothermal sound speed. More important, at
the probed wave vectors, only the microscopic, relaxed, part
of the viscosity is involved in the sound dampingGh, as the

structural relaxation contribution is frozen on the probed
time scale(in liquid lithium this latter contribution from the
microscopic part is one-half of the whole viscous term[8]).

In conclusion, in our opinion the model proposed by
Singh and Tankeswar has the merit to indicate a possible
heuristic analytical time(and frequency) dependence of the
intermediate scattering function(dynamic structure factor)
appropriate to catch some features of the dynamics in the
THz frequency region. Indeed, for instance, the functional
form proposed by ST has all the spectral moments finite,
while the memory function approach, leading to spectral
shapes that are described by fractions of polynoms, has only
a finite number of converging spectral moments. The ST
analysis, however, seems to be rather weak in the physical
interpretation of the relaxation processes that drive the col-
lective dynamics. Neither of the two parameterst1 and t2
has a clear meaning and can be directly associated to any
relaxation mechanism, as it happens, for example, within a
memory-function framework. As a consequence of the incor-
rect identification of the role of the thermal process, the pa-
rametert1 has no connection with any thermal property(be-
ing in fact mainly related to the structural relaxation timeta),
the generalized specific-heat ratio obtained from the fitting
shows marked discrepancies with the expected behavior, and
the viscosity cannot be estimated through Eq.(11) in
Ref. [1].
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FIG. 1. Comparison between the generalized specific-heat ratio
g=cp/cv as obtained by the ST models+d and by direct numerical
calculations•d.
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